# Dictionary Definition

perversity

### Noun

1 deliberate unruliness [syn: contrariness, perverseness]

2 deliberately deviating from what is good

# User Contributed Dictionary

## English

### Noun

- The quality of being perverse.
- A perverse act

#### Translations

the quality of being perverse

- Romanian: perversitate

a perverse act

- Romanian: perversitate

# Extensive Definition

In topology, a branch of mathematics, intersection
homology is a generalization of homology theory for singular
spaces, discovered by Mark Goresky
and Robert
MacPherson in Fall of 1974 and developed by them over the next
few years.

Intersection cohomology was used to prove the
Kazhdan-Lusztig
conjectures and the
Riemann-Hilbert correspondence. It is closely related to
L2
cohomology.

## Goresky-MacPherson approach

The homology groups of a compact, oriented, n-dimensional manifold X have a fundamental property called Poincaré duality: there is a perfect pairing- H_i(X,\mathbb) \times H_(X,\mathbb) \to H_0(X,\mathbb) \cong \mathbb

Classically — going back, for instance,
to Henri
Poincaré — this duality was understood in terms of
intersection
theory. An element of

- Hj(X)

is represented by a j-dimensional cycle. If an
i-dimensional and an (n − i)-dimensional cycle are in
general
position, then their intersection is a finite collection of
points. Using the orientation of X one may assign to each of these
points a sign; in other words intersection yields a 0-dimensional
cycle. One may prove that the homology class of this cycle depends
only on the homology classes of the original i- and (n −
i)-dimensional cycles; one may furthermore prove that this pairing
is perfect.

When X has singularities — that is,
when the space has places that do not look like Rn —
these ideas break down. For example, it is no longer possible to
make sense of the notion of "general position" for cycles. Goresky
and MacPherson introduced a class of "allowable" cycles for which
general position does make sense. They introduced an equivalence
relation for allowable cycles (where only "allowable boundaries"
are equivalent to zero), and called the group

- IHi(X)

of i-dimensional allowable cycles modulo this
equivalence relation "intersection homology". They furthermore
showed that the intersection of an i- and an (n-i)-dimensional
allowable cycle gives an (ordinary) zero-cycle whose homology class
is well-defined.

## Stratifications

Intersection homology was originally defined on suitable spaces with a stratification, though the groups often turn out to be independent of the choice of stratification. There are many different definitions of stratified spaces. A convenient one for intersection homology is an n -dimensional topological pseudomanifold. This is a (paracompact, Hausdorff) space X that has a filtration- \emptyset = X_ \subset X_0 \subset X_1 \ldots \subset X_n = X

of X by closed subspaces such that

- for each i and for each point x of Xi - Xi-1, there exists a neighborhood U \subset X of x in X, a compact n-i-1-dimensional stratified space L, and a filtration-preserving homeomorphism U \cong \mathbb^i \times CL. Here CL is the open cone on L.
- Xn−1 = Xn−2
- X − Xn−1 is dense in X.

If X is a topological pseudomanifold, the
i-dimensional stratum of X is the space Xi - Xi-1.

Examples:

- If X is an n-dimensional simplicial complex such that every simplex is contained in an n-simplex and n−1 simplex is contained in exactly two n-simplexes, then the underlying space of X is a topological pseudomanifold.
- If X is any complex quasi-projective variety (possibly with singularities) then its underlying space is a topological pseudomanifold, with all strata of even dimension.

## Perversities

Intersection homology groups IpHi(X) depend on a choice of perversity p, which measures how far cycles are allowed to deviate from transversality. A perversity p is a function from integers ≥2 to integers such that- p(2) = 0
- p(k+1) − p(k) is 0 or 1

The second condition is used to show invariance
of intersection homology groups under change of
stratification.

The complementary perversity q of p is the one
with

- p(k)+q(k)=k-2

Intersection homology groups of complementary
dimension and complementary perversity are dually paired.

Examples:

- The minimal perversity has p(k)=0. Its complement is the maximal perversity with q(k)=k−2.
- The (lower) middle perversity m is defined by m(k) = integer part of (k−2)/2. Its complement is the upper middle perversity, with values the integer part of (k''−1)/2. If the perversity is not specified, then one usually means the lower middle perversity. If a space can be stratified with all strata of even dimension (for example, any complex variety) then the intersection homology groups are independent of the values of the perversity on odd integers, so the upper and lower middle perversities are equivalent.

## Singular intersection homology

Fix a topological pseudomanifold X of dimension n with some stratification, and a perversity p.A map σ from the standard i-simplex
Δi to X (a singular simplex) is called allowable if

- \sigma^(X_-X_) is contained in the i− k +p(k) skeleton of Δi

- I^pH_i(X)

If X has a triangulation compatible with the
stratification, then simplicial intersection homology groups can be
defined in a similar way, and are naturally isomorphic to the
singular intersection homology groups.

The intersection homology groups are independent
of the choice of stratification of X.

If X is a topological manifold, then the
intersection homology groups (for any perversity) are the same as
the usual homology groups.

## Small resolutions

A resolution of singularities- f:X\mapsto Y

There is a variety with two different small
resolutions that have different ring structures on their
cohomology, showing that there is in general no natural ring
structure on intersection (co)homology.

## Sheaf theory

Deligne's formula for intersection cohomology states that- I^pH_(X) = I^pH^i(X) = H^_c(IC_p(X))

- IC_p(X) = \tau_Ri_\tau_Ri_\cdots\tau_Ri_ _

By replacing the constant sheaf on
X−Xn−2 with a local system, one can use
Deligne's formula to define intersection cohomology with
coefficients in a local system.

## Properties of the complex IC(X)

The complex ICp(X) has the following properties- On the complement of some closed set of codimension 2, we have

- H^i(j_x^* IC_p) is 0 for i+m≠ 0, and for i=−m the groups form the constant local system C

- H^i(j_x^* IC_p) is 0 for i+m< 0
- If i>0 then H^(j_x^* IC_p) is zero except on a set of codimension at least a for the smallest a with p(a)≥ m−i
- If i>0 then H^(j_x^! IC_p) is zero except on a set of codimension at least a for the smallest a with q(a)≥ (i)

As usual, q is the complementary perversity to p.
Moreover the complex is uniquely characterized by these conditions,
up to isomorphism in the derived category. The conditions to not
depend on the choice of stratification, so this shows that
intersection cohomology does not depend on the choice of
stratification either.

Verdier
duality takes ICp to ICq shifted by n=dim(X) in the derived
category.

## References

- Armand Borel, Intersection Cohomology (Progress in Mathematics (Birkhauser Boston)) ISBN 0817632743
- Mark Goresky and Robert MacPherson, La dualité de Poincaré pour les espaces singuliers. C.R. Acad. Sci. t. 284 (1977), pp. 1549–1551 Serie A .
- Goresky, Mark; MacPherson, Robert, Intersection homology theory, Topology 19 (1980), no. 2, 135–162.
- Goresky, Mark; MacPherson, Robert, Intersection homology. II, Inventiones Mathematicae 72 (1983), no. 1, 77–129. This gives a sheaf-theoretic approach to intersection cohomology.
- Frances Kirwan, Jonathan Woolf An Introduction to Intersection Homology Theory, ISBN 1584881844
- Kleiman, Steven. The development of intersection homology theory. A century of mathematics in America, Part II, Hist. Math. 2, Amer. Math. Soc., 1989, pp. 543-585.

## Notes

# Synonyms, Antonyms and Related Words

antagonism, antipathy, antithesis, bearishness, bitchiness, cantankerousness,
churlishness,
clashing, collision, conflict, confrontation, contradiction, contradistinction,
contraindication,
contraposition,
contrariety,
contrariness,
contrast, counterposition,
crabbedness,
crankiness,
cross-purposes, crossness, crustiness, cussedness, difficultness, disagreeability,
disagreement,
discrepancy,
dourness, excitability, fractiousness, frowardness, hostility, huffiness, huffishness, inconsistency, inimicalness, irascibility, irritability, meanness, oppositeness, opposition, opposure, oppugnance, oppugnancy, orneriness, perverseness, perversite, polarity, repugnance, showdown, snappishness, stuffiness, sulkiness, sullenness, testiness, ugliness, waspishness, waywardness, wrongheadedness